МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ **БАШКИРСКИЙ ИНСТИТУТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ (ФИЛИАЛ)** ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО (ПЕРВЫЙ КАЗАЧИЙ УНИВЕРСИТЕТ)»

(БИТУ (филиал) ФГБОУ ВО «МГУТУ им. К.Г. Разумовского (ПКУ)»)

Кафедра «Информационные технологии и системы управления»

«Утверждаю» Директор БИТУ (филиал) ФГБОУ ВО «МГУТУ им. К.Г. Разумовского (ПКУ)» ______ Е.В. Кузнецова <u>«06» февраля 2020 г.</u>

Рабочая программа дисциплины

Б1.О.02.06 – Моделирование систем

Направление подготовки 09.03.01 Информатика и вычислительная техника

Направленность (профиль) подготовки <u>Программное обеспечение вычислительной техники и автоматизированных систем в пищевой промышленности и отраслях агропромышленного комплекса</u>

Квалификация выпускника – бакалавр

Форма обучения очно-заочная

Рабочая программа дисциплины «Моделирование систем» разработана на основании федерального государственного образовательного стандарта высшего образования по 09.03.01 направлению подготовки Информатика И вычислительная утвержденного приказом Министерства образования и науки Российской Федерации от 19 сентября 2017г. №929 «Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 Информатика и вычислительная техника», учебного плана по основной профессиональной образовательной программе высшего образования «Программное обеспечение вычислительной техники и автоматизированных пишевой промышленности систем В отраслях агропромышленного комплекса».

Рабочая программа дисциплины разработана группой в составе: к.т.н. Колязов К.А., к.п.н. Одинокова Е.В., к.ф.-м.н. Смирнов Д.Ю., к.п.н. Тучкина Л.К., к.п.н. Яшин Д.Д., ст. преподаватель Остапенко А.Е.

Яшин Д.Д., ст. преподаватель Остапенко А	.E.				
Руководитель основной профессиональной образовательной программы кандидат физико-математических наук, дог		(подпись	<u></u>	Д.Ю. Сми	рнов
Рабочая программа дисциплины обсужинформационные технологии и системы Протокол № 7 от «05» февраля 2020 года			на	заседании	кафедры
И.о. заведующего кафедрой к.п.н., доцент	(подпись)	E.B.	Один	окова	

Оглавление

1. Цели и задачи дисциплины	4
2. Место дисциплины в структуре ОПОП:	4
3. Требования к результатам освоения дисциплины:	4
4. Объем дисциплины и виды учебной работы	5
5. Содержание учебной дисциплины	6
5.1. Содержание разделов и тем дисциплины	6
5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами	7
5.3. Разделы и темы дисциплины и виды занятий	7
6.Перечень лабораторных работ	8
6.1. План самостоятельной работы студентов	9
6.2. Методические указания по организации самостоятельной работы студентов	10
7. Примерная тематика курсовых работ (проектов) (при наличии)	14
8. Учебно-методическое и информационное обеспечение дисциплины	14
9. Материально-техническое обеспечение дисциплины:	15
10. Образовательные технологии:	15
11. Оценочные средства (ОС):	16
12. Организация образовательного процесса для лиц с ограниченными возможност	гями. 26
13. Лист регистрации изменений	28

1. Цели и задачи дисциплины

Целью дисциплины является обучение студентов основным понятиям, моделям и методам информационных технологий, формирование знаний, умений и навыков решения задач автоматизации информационных процессов на основе информационных технологий. Основными задачами изучения дисциплины являются практическое освоение информационных и информационно-коммуникационных технологий и инструментальных средств для решения типовых общенаучных задач в своей профессиональной деятельности и для организации своего труда.

2. Место дисциплины в структуре ОПОП:

Дисциплина «Моделирование систем» - дисциплина базовой части учебного плана по направлению подготовки 09.03.01. **Информатика и вычислительная техника (уровень бакалавриата).**

Имеет логическую и содержательно-методическую взаимосвязь:

- с предыдущими дисциплинами: «Электротехника и электроника», «Информационные технологии», «Теория систем и методы сетевого планирования и управления»;
- с последующими дисциплинами: «Проектирование автоматизированных информационных систем для предприятий пищевой промышленности и отраслей агропромышленного комплекса», «Интеллектуальные информационные системы», «Базы данных».

Способствует формированию системы компетенций в области использования современных информационных технологий в профессиональной деятельности.

Требования к «входным» знаниям, умениям и готовностям обучающегося, необходимым при освоении данной дисциплины: знание основ школьного курса информатики и математики: общую характеристику процессов сбора, передачи, обработки и накопления информации; технические и программные средства реализации информационных процессов; модели решения функциональных и вычислительных задач; базы данных; компьютерные сети; основы защиты информации.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций:

ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;

Знать:

- об основных тенденциях развития программных средств и методов моделирования;
- о принципах построения и работы структурных, функциональных и логических схем ЭВМ;
- о методах и способах проверки построенных моделей на адекватность реальным объектам.

Уметь:

- классификацию, назначение, свойства и возможности основных типов моделей, применяемых на системном и функционально-логическом уровнях детализации проекта;
 - применять основы анализа результатов моделирования;
 - формулировать понятия, характеризующие модели и процесс моделирования;
 - применять методики построения моделей;
 - реализовывать этапы и подходы моделирования вычислительных и информационных

систем.

Владеть:

- навыками проведения формализации исследуемых структур на системном и функционально-логическом уровне детализации проекта компьютерных систем;
- навыками планирования и проведения машинных экспериментов на разработанной им модели;
- навыками интерпретации полученных результатов, увязывая их с соответствующими техническими характеристиками;
- навыками использования ЭВМ, знания операционных систем и языков программирования для решения задач моделирования.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Моделирование систем» направлен на формирование у обучающихся по программе высшего образования — программе бакалавриата— по направлению подготовки 09.03.01 «Информатика и вычислительная техника» следующих профессиональных компетенций: ОПК-1

Код и описание компетенции	Планируемые результаты обучения по дисциплине
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Знает основы высшей математики, физики, экологии, инженерной графики, информатики и программирования
общеинженерные знания, методы математического анализа и моделирования, теоретического и	ОПК-1.2 Умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования
экспериментального исследования в профессиональной деятельности;	ОПК-1.3 Владеет методами теоретического и экспериментального исследования объектов профессиональной деятельности

4. Объем дисциплины и виды учебной работы

Очно-заочная форма обучения

Вид учебной работы	Всего часов /	Семе	естры	
-	зач. ед.	6	7	
Аудиторные занятия (контактная работа)	64	28	36	
В том числе:				
Лекции	екции 20			
Практические занятия (ПЗ)	44	16	28	
Семинары (С)				
Лабораторные работы (ЛР)				
Самостоятельная работа	179	80	99	
Вид промежуточной аттестации:		зачёт	экзамен	
Контроль	45		45	
Общая трудоемкость (часов)	ая трудоемкость (часов) 288 108			
зачетных единиц	8	3	5	

для обучающихся по индивидуальному учебному плану количество часов контактной и

самостоятельной работы устанавливается индивидуальным учебным планом¹.

Дисциплина реализуется посредством проведения учебных занятий (включая проведение текущего контроля успеваемости и промежуточной аттестации обучающихся). В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в форме контактной работы обучающихся с преподавателем и самостоятельной работы обучающихся. При реализации дисциплины предусмотрена аудиторная контактная работа и внеаудиторная контактная работа посредством электронной информационно-образовательной среды. Учебный процесс в аудитории осуществляется в форме лекций и практических занятий. В лекциях раскрываются основные темы изучаемого курса, которые входят в рабочую программу. На практических занятиях более подробно изучается программный материал в плоскости отработки практических умений и навыков и усвоения тем. Внеаудиторная контактная работа включает в себя проведение текущего контроля успеваемости в электронной информационно-образовательной среде.

5. Содержание учебной дисциплины

5.1. Содержание разделов и тем дисциплины

Тема 1. Введение в теорию компьютерного моделирования (ОПК-1)

Основы теории компьютерного моделирования. Системный подход к моделированию. Классификация моделей. Технологические этапы разработки моделей. Языки описания моделей. Системная динамика. Принципы системной динамики. Имитационные модели системной линамики.

Тема 2. Искусственный интеллект (ОПК-1)

Моделирование работы человеческого интеллекта. Тест Тьюринга. Системы искусственного интеллекта. Математические теории, лежащие в основе моделирования искусственного интеллекта. Реализация компьютерных моделей систем принятия решений. Экспертные системы. Нейронные сети. Семантические сети.

Тема 3. Основы статистического моделирования (ОПК-1)

Введение в теорию статистического моделирования. Область применения и история развития. Опыт Бюффона. Метод статистических испытаний (Монте-Карло). Теорема Колмогорова. Генераторы случайных чисел. Проверка равномерности. Моделирование случайных событий. Моделирование непрерывных случайных величин.

Тема 4. Описание поведения системы (ОПК-1)

Управление модельным временем. Виды представления времени, изменение времени с постоянным шагом, изменение времени по особым состояниям.

Тема 5. Планирование модельных экспериментов (ОПК-1)

Цели планирования. Стратегическое планирование имитационного эксперимента. Способы построения стратегического плана. Тактическое планирование эксперимента. Методы понижения дисперсии. Методы стратифицированной выборки.

Тема 6. Обработка и анализ результатов моделирования (ОПК-1)

для обучающихся по индивидуальному учебному плану - учебному плану, обеспечивающему освоение соответствующей образовательной программы на основе индивидуализации ее содержания с учетом особенностей и образовательных потребностей конкретного обучающегося (в том числе при ускоренном обучении, для обучающихся с ограниченными возможностями здоровья и инвалидов, для лиц, зачисленных для продолжения обучения в соответствии с частью 5 статьи 5 Федерального закона от 05.05.2014 №84-ФЗ «Об особенностях правового регулирования отношений в сфере образования в связи с принятием в Российскую Федерацию Республики Крым и образованием в составе Российской Федерации новых субъектов - Республики Крым и города федерального значения Севастополя и о внесении изменений в Федеральный закон «Об образовании в Российской Федерации»).

5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

№ п/п	Наименование обеспечиваемых	№ разделов и тем данной дисциплины, необходимых для изучения обеспечиваемых (последующих) дисциплин			
11/11	(последующих) дисциплин	изучения обеспечиваемых (последующих) дисциплин			
1.	«Проектирование автоматизированных информационных систем»	Раздел 1 (тема 1.1) Раздел 1 (тема 1.2) Раздел 1 (тема 1.3) Раздел 1 (тема 1.3)			
2	«Базы данных»	Раздел 3 Раздел 3 (тема 3.1) (тема 3.2)			
3	«Интеллектуальные информационные системы»			Раздел 3 (тема 3.5)	

5.3. Разделы и темы дисциплины и виды занятий

Очно-заочная форма обучения

№	Наименование		Виды занятий в часах				
п/п	темы	Лекции	Практические занятия		Лабораторные занятия	СРС	Всего
1.	Введение в теорию компьютерного моделирования	4	6			30	40
2.	Искусственный интеллект	4	6			33	43
3.	Основы статистического моделирования	4	4			28	36
4.	Описание поведения системы	2	8			30	40
5.	Планирование модельных экспериментов	2	10			28	40
6.	Обработка и анализ результатов моделирования	4	10			30	44
	Контроль	20	44			179	45 288

Формы учебных занятий с использованием активных и интерактивных технологий обучения

$N_{\underline{0}}$	Наименование разделов (тем), в которых	Образовательные
	используются активные и/или интерактивные	технологии
	образовательные технологии	
1.	Введение в теорию компьютерного	Лекция-визуализация
	моделирования	
2.	Искусственный интеллект	Лекция-визуализация
3.	Основы статистического моделирования	Лекция-визуализация
4.	Описание поведения системы	Лекция-визуализация
5.	Планирование модельных экспериментов	Лекция-визуализация
6.	Обработка и анализ результатов моделирования	Лекция-визуализация

6.Перечень практических занятий

Очно-заочная форма обучения

<u>No</u>	№ раздела		Трудоем	Оценочные	Формируем
п/	и темы	Наименование практических	кость	средства	ые
П	дисциплин	работ	(час.)		компетенции
	ы (модуля)	-			
1	Тема 1	Имитационное моделирование.			
		Принципы системной			
		динамики. Знакомство со			
		средой построения		Устный	
		имитационных моделей. Разбор	6	опрос	ОПК-1
		примеров, решение простых		onpoc	
		задач. Формирование			
		экономических моделей. Расчет			
		погашения кредита.			
2	Тема 2	Лотереи. Моделирование			
		поведения. Принятие решений	6	Устный	ОПК-1
		человеком. Построение модели,		опрос	OHK-1
		проверка выбора.			
3	Тема 3	Доказательство формулы			
		Бюффона. Построение			
		физического генератора		Устный	
		случайных чисел. Проверка	4	опрос	ОПК-1
		качества генератора.		onpoc	
		Построение распределения			
		случайной величины.			
4	Тема 4	Моделирование развития		Устный	
		популяции. Определение		опрос	
		пространства параметров,			
		влияющих на рост популяции.			
		Качественный анализ.	_		
		Воздействие эпидемий на рост	8		ОПК-1
		популяции.			
		Моделирование влияние			
		вакцинации на развитие			
		эпидемий.			
		Определение параметров			

		эффективности вакцинации. «Полет» над пространством параметров. Экспериментально определение областей допустимых значений.			
		Построение пространства параметров			
5	Тема 5	Построения стратегического плана модели. Тактическое планирование эксперимента. Качественный анализ результатов моделирования.	10	Устный опрос	ОПК-1
6	Тема б	Оценка качества физического генератора случайных чисел. Корреляционный анализ. Задачи на практическое применение Т-критерия (Excel). Задачи на практическое применение F-критерия (Excel).	10	Устный опрос	ОПК-1

6.1. План самостоятельной работы студентов

Очно-заочная форма обучения

№	Тема	Вид самостоятельной	Задание	Рекомендуе	Количество
п/п		работы		мая	часов
				литература	
1	Введение в теорию	Подготовка к	Выучить	Осн. №1-4,	
	компьютерного	практическим	теоретический	доп. №1-7	30
	моделирования	занятиям	материал		30
		Подготовка к экзамену			
2	Искусственный	Подготовка к	Выучить	Осн. №1-4,	
	интеллект	практическим	теоретический	доп. №1-7	33
		занятиям	материал		
3	Основы	Подготовка к экзамену	Выучить	Осн. №1-4,	
	статистического		теоретический	доп. №1-7	28
	моделирования		материал		
4	Описание	Подготовка к	Выучить	Осн. №1-4,	
	поведения системы	практическим	теоретический	доп. №1-7	30
		занятиям	материал		
5	Планирование	Подготовка к экзамену	Выучить	Осн. №1-4,	
	модельных		теоретический	доп. №1-7	28
	экспериментов		материал		
6	Обработка и анализ	Подготовка к	Выучить	Осн. №1-4,	
	результатов	практическим	теоретический	доп. №1-7	30
	моделирования	занятиям	материал		30

6.2. Методические указания по организации самостоятельной работы студентов

Для успешного обучения обучающийся должен готовиться к лекции, которая является важнейшей формой организации учебного процесса. Лекция:

- знакомит с новым учебным материалом,
- разъясняет учебные элементы, трудные для понимания,
- систематизирует учебный материал,
- ориентирует в учебном процессе.
 - Подготовка к лекции заключается в следующем:
- внимательно прочитайте материал предыдущей лекции,
- выясните тему предстоящей лекции (по тематическому плану, по информации лектора),
- ознакомьтесь с учебным материалом по учебнику и учебным пособиям,
- постарайтесь определить место изучаемой темы в своей профессиональной подготовке,
- запишите возможные вопросы, которые вы зададите лектору на лекции.
 Подготовка к практическим занятиям:
- внимательно прочитайте материал лекций, относящихся к данному семинарскому занятию, ознакомьтесь с учебным материалом по учебнику и учебным пособиям,
- выпишите основные термины,
- ответьте на контрольные вопросы по семинарским занятиям, готовьтесь дать развернутый ответ на каждый из вопросов,
- определите, какие учебные элементы остались для вас неясными и постарайтесь получить на них ответ заранее (до семинарского занятия) во время текущих консультаций преподавателя,
- выполните домашнее задание.
 - Учтите, что:
- готовиться можно индивидуально, парами или в составе малой группы (последние являются эффективными формами работы);
- рабочая программа дисциплины в части целей, перечню знаний, умений, терминов и учебных вопросов может быть использована вами в качестве ориентира в организации обучения.

Подготовка к промежуточной аттестации. К промежуточной аттестации необходимо готовиться целенаправленно, регулярно, систематически и с первых дней обучения по данной дисциплине. Попытки освоить дисциплину в период зачётно-экзаменационной сессии, как правило, показывают не удовлетворительные результаты.

В самом начале учебного курса познакомьтесь с рабочей программой дисциплины и другой учебно-методической документацией, включающими:

- перечень знаний и умений, которыми обучающийся должен владеть;
- тематические планы лекций и практических занятий;
- контрольные мероприятия;
- учебники, учебные пособия, а также электронные ресурсы;
- перечень экзаменационных вопросов (вопросов к зачету).

После этого у вас должно сформироваться чёткое представление об объеме и характере знаний и умений, которыми надо будет овладеть по дисциплине. Систематическое выполнение учебной работы на лекциях и практических занятиях позволит успешно освоить дисциплину и создать хорошую базу для прохождения промежуточной аттестации.

Вопросы устного опроса

Тема 1. Введение в теорию компьютерного моделирования

1. Математическая модель технологического процесса. Методы получения математических моделей технологических процессов.

- 2. Моделирование технологических процессов на ЭВМ.
- 3. Перспективы применения методов оптимизации и моделирования в проектировании технологических процессов пищевой промышленности.
- 4. Приемы моделирования процессов и объектов: материальное (физическое и аналоговое), идеальное (интуитивное, знаковое).
- 5. Модель, объект, адекватность, простота. Входные, выходные, внутренние переменные. Иерархия данных.
- 6. Виды: моделей эмпирические регрессионные, полуэмпирические, теоретические. Контроль правдоподобия модели.
- 7. Принципы моделирования. Необходимость системного исследования и совершенствования способов моделирования.

Тема 2. Искусственный интеллект

- 1. Какие информационные системы получили название «Искусственные нейронные сети»?
- 2. В чем отличие модели знаний, представленных в виде онтологии?
- 3. Для решения каких задач используют модели поиска.
- 4. Что такое генетический алгоритм?
- 5. В чем заключается задача распознавания образов и как она может решаться при помощи интеллектуальных информационных систем?
- 6. Что такое нечеткое множество?
- 7. Что такое нечеткая переменная?
- 8. Что такое лингвистическая переменная.

Тема 3. Основы статистического моделирования

- 1. Способы задания исходной информации для моделирования технологических процессов. Функция, оператор, характеристики, структурная схема технологического процесса пищевого производства.
- 2. Ориентированный граф. Последовательность построения графа. Декомпозиция системы.
- 3. Математическая модель графа технологического процесса пищевого производства. Построение обобщенного графа.
- 4. Постановка оптимизационной задачи систем массового обслуживания.

Тема 4. Описание поведения системы

- 1. Основные понятия теории систем массового обслуживания. Пуассоновский поток.
- 2. Моделирование систем массового обслуживания на ЭВМ. Имитационные модели.
- 3. Метод Монте-Карло. Датчики случайных чисел.
- 4. Математическая постановка задачи моделирования внешней структуры процесса изготовления изделий пищевой промышленности.
- 5. Конструктивный граф. Кодирование этапов обработки.

Тема 5. Планирование модельных экспериментов

- 1. Математическая постановка задачи моделирования внешней структуры процесса изготовления изделий пищевой промышленности.
- 2. Конструктивный граф. Кодирование этапов обработки.
- 3. Блоки информационного обеспечения. Моделирование процесса формирования элементов внешней среды.
- 4. Моделирование конструктивных и технологических решений и технологических операций

Тема 6. Обработка и анализ результатов моделирования

- 1. Структурно-функциональная модель технологической операции.
- 2. Критерии оптимизации и их выбор при решении различных задач моделирования технологических процессов.
- 5. Математическая постановка задачи проектирования технологических процессов кондитерского производства. Область допустимых технологических решений.

- Определение области предварительных решений, отвечающих заданным требованиям.
- 6. Общая схема определения оптимальных процессов изготовления пищевой продукции.

Задача 1. Создание и обучение персептрона для распознавания цветков ириса

Для решения задачи использовать пакет STATISTICA Neural Networks.

- 1. Разбить заданную выборку на обучающее и контрольное множества, указать выходную переменную, перемешать наблюдения.
- 2. Создать персептрон, соответствующий структуре выборки (с выходной номинальной переменной типа «*Один-из-N*»).
- 3. Обучить персептрон.
- 4. Указать параметры классификации.
- 5. Оценить качество обучения.

<u>Задача 2</u>. Создание обучаемых структур для диагностики разновидностей аппендицита

Для решения задачи использовать пакет STATISTICA Neural Networks.

- А. Разбить заданную выборку на <u>обучающее и контрольное множества</u>. Создать персептрон, соответствующий структуре выборки, и обучить его. <u>Дополнительное задание</u>: провести отбор входных переменных с помощью генетического алгоритма (*Train/Auxiliary/Feature Selection/Genetic Algorithm*).
- В. Разбить заданную выборку на <u>обучающее, контрольное и тестовое множества</u>. Решить задачу распознавания, подобрав и обучив с помощью *Автоматического конструктора сетей* (*Intelligent Problem Solver*) следующие сети с оптимальной топологией:
 - а) персептрон,
 - b) сеть на радиальных базисных функциях и
 - с) линейную сеть.
- С. Провести дискриминантный анализ.
- D. Сопоставить эффективность пяти указанных выше способов распознавания, а именно: оптимального и неоптимального персептрона, сети на радиальных базисных функциях, линейной сети и дискриминантного анализа, представив результаты в виде сводной таблицы.
- Е. Получить статистические оценки качества распознавания для нейронной сети, наиболее эффективной при решении данной задачи.

Отчет должен содержать:

- 1) сводную таблицу с результатами применения пяти указанных способов распознавания, содержащую
 - а) процентные показатели корректного распознавания на контрольном (тестовом) множестве,
 - b) характеристики обучающего, контрольного и тестового множеств,
 - с) характеристики и графические изображения использованных нейронных сетей.
- 2) статистические оценки качества распознавания для наиболее эффективной нейронной сети, а именно:
 - а) оценку степени согласованности прогноза и наблюдений на контрольном множестве²,
 - b) проверку гипотезы об отсутствии статистически значимых различий между результатами классификации на обучающем и контрольном множествах³,
 - с) проверку гипотезы об эквивалентности распределений различных типов входных

² Использовать электронную таблицу *Excel*.

³ Использовать пакет *STATISTICA*.

данных в обучающем и контрольном множествах⁴.

3) комментарии и выводы.

<u>Задача 3</u>. Создание и обучение сети Кохонена для распознавания цветков ириса Для решения задачи используется пакет STATISTICA Neural Networks.

- 1. Разбить заданную выборку на обучающее и контрольное множества, указать выходную переменную, перемешать наблюдения.
- 2. Создать сеть Кохонена, соответствующую структуре выборки.
- 3. Обучить персептрон.
- 4. Выставить пороги принятия и отвержения.
- 5. Разметить топологическую карту.
- 6. Оценить качество обучения.
- 7. Используя диалоговое окно *Частоты выигрышей/Win Frequencies*, оценить и сравнить места расположения центров кластеров для различных классов в обучающем и контрольном множествах.

<u>Задача 4</u>. Создание сети Кохонена для диагностики неисправностей конструкции и разновидностей аппендицита

Для решения задачи использовать пакет STATISTICA Neural Networks.

- А. Разбить заданную выборку, представляющую наблюдения за неисправностями конструкции, на обучающее и контрольное множества. Создать сеть Кохонена, соответствующую структуре выборки, а также сеть, имеющую в четыре раза большее число элементов, и обучить их.
- В. Сопоставить эффективность созданных сетей Кохонена, представив результаты в виде сводной таблицы.
- С. Используя заданную выборку, представляющую медицинские наблюдения, попытаться создать и обучить сеть Кохонена для диагностики разновидностей аппендицита.
- D. Факторизовать данные и повторить попытку.
- Е. Представить результаты выполнения пунктов С и D в виде сводной таблицы.

Отчет должен содержать:

- 1) сводную таблицу с результатами применения сетей Кохонена, содержащую
 - а) процентные показатели корректного распознавания на контрольном множестве,
 - b) характеристики обучающего и контрольного множеств,
 - с) характеристики и использованных нейронных сетей графические изображения и графические изображения их топологических карт.
- 2) комментарии и выводы.

Задача 5. Прогнозирование временного ряда

Для решения задачи использовать пакет STATISTICA Neural Networks.

А. Прогнозирование месячных объемов авиаперевозок проводить с помощью 3-слойного персептрона. Анализируемой переменной приписать тип Input/Output. Учитывая наличие сезонной составляющей, параметр Временное окно (Steps) задать равным 12, а параметр Горизонт (Lookahead) — равным 1 (окно Create Network). Объемы обучающего и контрольного множеств сделать равными половине объема имеющейся выборки наблюдений. Перемешать наблюдения, не нарушая порядка их следования во времени (Shuffle). Для обучения сети использовать метод сопряженных градиентов. Сравнить результаты прогноза и наблюдения (команда Run/Time Series...). Для оценки качества прогноза вывести статистики регрессии (команда Statistics/Regression...).

 $^{^4}$ Использовать пакеты STATISTICA Neural Networks (для классификации с помощью сетей Кохонена) и пакет STATISTICA (для проверки гипотезы об эквивалентности распределений).

- В. Решить ту же самую задачу, подобрав и обучив с помощью *Автоматического конструктора сетей (Intelligent Problem Solver)* персептрон с оптимальной топологией.
- С. Сравнить характеристики сетей, созданных при выполнении заданий А и В, включая полученные качества прогнозов.

Отчет должен содержать:

- 1) графики наблюдаемых и прогнозируемых значений временного ряда;
- 2) таблицу статистик регрессии;
- 3) характеристики и графическое изображение использованной нейронной сети;
- 4) комментарии и выводы.

7. Примерная тематика курсовых работ (проектов) (при наличии) Не предусмотрены.

8. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Ивашкин, Ю.А. Мультиагентное моделирование в имитационной системе Simplex3 [Электронный ресурс]: учеб. пособие / Ю.А. Ивашкин.— эл. изд. М.: Лаборатория знаний, 2016 .— 361 с. : ил. (Учебник для высшей школы) // https://rucont.ru/read/1633401?file=443282&f=1633401
- 2. Моделирование оценки качества информационных систем / Исаев Г.Н. М.:НИЦ ИНФРА-М, 2015. 230 с // http://znanium.com/bookread2.php?book=521640
- 3. Моделирование систем управления с применением Matlab: Учебное пособие/ Тимохин А.Н., Румянцев Ю.Д; Под ред. А.Н. Тимохина М.: НИЦ ИНФРА-М, 2016. 256 с.: 60х90 1/16. (Высшее образование: Бакалавриат) // http://znanium.com/bookread2.php?book=474709
- 4. Осташков, В.Н. Практикум по решению инженерных задач математическими методами [Электронный ресурс]: учеб. пособие / В.Н. Осташков .— 2-е изд. (эл.) .— М. : Лаборатория знаний, 2015 .— 207 с. : ил. (Математическое моделирование) // https://rucont.ru/read/1634034?file=443597&f=1634034

б) дополнительная литература

- 1. Математическое моделирование технических систем : учебник / В.П. Тарасик. Минск: Новое знание ; М. : ИНФРА-М, 2018. 592 с. // http://znanium.com/bookread2.php?book=952123
- 2. Методы, модели и алгоритмы в автоматизированном проектировании промышленных изделий: Монография/ Головицына М.В., Литвинов В.П. М.: НИЦ ИНФРА-М, 2012. 283 с. // http://znanium.com/bookread2.php?book=318019
- 3. Моделирование информационных ресурсов: теория и решение задач: учебное пособие / Г.Н. Исаев. М.: Альфа-М: ИНФРА-М, 2010. 224 с.: ил. // http://znanium.com/bookread2.php?book=193771
- 4. Моделирование систем и процессов, 2013, №4-Воронеж:ФГБОУ ВПО ВГЛТА,2013.-74 с. // http://znanium.com/bookread2.php?book=475379
- 5. Моделирование систем и процессов: Учебное пособие / Н.Г. Чикуров. М.: ИЦ РИОР: НИЦ Инфра-М, 2013 http://znanium.com/bookread2.php?book=392652
- 6. Моделирование системы защиты информации: Практикум: Учебное пособие / Е.К.Баранова, А.В.Бабаш М.: ИЦ РИОР: НИЦ ИНФРА-М, 2015 120 с. // http://znanium.com/bookread2.php?book=476047

7. Окулов, С.М. Динамическое программирование [Электронный ресурс] / О.А. Пестов, С.М. Окулов .— 2-е изд. (эл.) .— М. : Лаборатория знаний, 2015 .— 299 с. // https://rucont.ru/read/1633649?file=443406&f=1633649

в) программное обеспечение

- 1. Microsoft Windows
- 2. Microsoft Word
- 3. Microsoft Excel
- 4. Microsoft Power Point

г) базы данных, информационно-справочные и поисковые системы

- 1. http://znanium.com/ ООО электронно-библиотечная система "ЗНАНИУМ"
- 2. https://rucont.ru/ OOO "Национальный цифровой ресурс «РУКОНТ»
- 3. http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн»

9. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения занятий лекционного типа; занятий лабораторного и семинарского типа; для курсового проектирования (выполнения курсовых работ); для проведения групповых и индивидуальных консультаций; для текущего контроля и промежуточной аттестации, а также помещение для самостоятельной работы обучающихся Лаборатория программного обеспечения: Рабочие места обучающихся; Рабочее место преподавателя; Ноутбук; Проектор, Экран; Классная доска; 10 рабочих мест обучающихся оснащенные ПЭВМ с подключением к сети интернет и обеспечением доступа в электронную информационно-образовательную среду Университета; Учебно-наглядные пособия.

10. Образовательные технологии:

При реализации учебной дисциплины «Моделирование систем» применяются различные образовательные технологии, в том числе технологии электронного обучения, используют в учебном процессе активные и интерактивные формы учебных занятий (дискуссии, кейс-метод, ролевые игры, разбор конкретных ситуаций) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Удельный вес учебных занятий, проводимых в интерактивных формах, составляет не менее 30% аудиторных занятий (определяется учебных планом ОПОП).

Учебные часы дисциплины «Моделирование систем» предусматривают классическую контактную работу преподавателя с обучающимся в аудитории посредством электронной информационно-образовательной среды в синхронном и асинхронном режиме (вне аудитории) посредством применения возможностей компьютерных технологий (электронная почта, электронный учебник, вебинар, видеофильм, презентация, форум и др.)

Возможности различных методов обучения в смысле активизации учебной деятельности различны, они зависят от природы и содержания соответствующего метода, способов их использования, мастерства педагога. Тренинги, деловые и ролевые игры являются формой индивидуально- группового и профессионально-ориентированного обучения на основе реальных или модельных ситуаций применительно ввиду профессиональной деятельности обучающихся.

Основная задача преподавателя — активизировать работу студентов на занятии. Группа делится на микрогруппы, в которой назначается модератор-руководитель деятельности каждого студента в соответствии с его профессиональной ролью.

По дисциплине «Моделирование систем» проводятся:

- лекция-визуализация – передача информации посредством графического

представления в образной форме (слайды, видео-слайды, плакаты и т.д.). Подготовка данной лекции преподавателем состоит в том, чтобы изменить, переконструировать учебную информацию по теме лекционного занятия в визуальную форму для представления через технические средства обучения (ноутбук, акустические системы, экран, мультимедийный проектор) или вручную (схемы, рисунки, чертежи и т.п.). Лекцию-визуализацию рекомендуется проводить по темам, ключевым для данного предмета, раздела. При подготовке наглядных материалов следует соблюдать требования и правила, предъявляемые к представлению информации.

11. Оценочные средства (ОС):

Оценочные средства по дисциплине «Моделирование систем» разработаны в соответствии с положением о балльно-рейтинговой системе оценки успеваемости студентов ФГБОУ ВО «МГУТУ им. К.Г. Разумовского (Первый казачий университет)».

Критерии оценки текущих занятий для очной формы обучения

- ✓ посещение студентом одного занятия 1 балл;
- ✓ выполнение заданий для самостоятельной работы от 1 до 3 баллов за каждый пункт задания;
- ✓ активная работа на занятии от 1 до 3 баллов;
- ✓ подготовка доклада— от 1 до 5 баллов;
- ✓ защита лабораторной работы от 1 до 5 баллов.

Критерии оценки тестовых заданий:

✓ каждое правильно выполненное задание – 1 балл

БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА

Максимальная сумма рейтинговых баллов, которая может быть начислена студенту по учебной дисциплине, составляет 100 рейтинговых

Форма промежуточной	Ко	личество баллог	3
аттестации	Текущий	Рубежный	Сумма
WIIVING	контроль	контроль	баллов
Экзамен	30-70	20-30	60-100
Зачет	40-80	10-20	60-100

Рейтинг студента в семестре по дисциплине складывается из рейтинговых баллов, которыми преподаватель в течение семестра оценивает посещение учебных занятий, его текущую работу на занятиях и самостоятельную работу, результаты текущих контрольных работ, тестов, устных опросов, премиальных и штрафных баллов.

Рубежный рейтинг студента по дисциплине складывается из оценки в рейтинговых баллах ответа на экзамене (зачете).

Преподаватель, осуществляющий проведение практических занятий, доводит до сведения студентов на первом занятии информацию о формировании рейтинга студента и рубежного рейтинга.

По окончании семестра каждому студенту выставляется его Рейтинговая оценка текущей успеваемости, которая является оценкой посещаемости занятий, активности на занятиях, качества самостоятельной работы.

Студент допускается к мероприятиям промежуточной аттестации, если его рейтинговая оценка текущей успеваемости (без учета премиальных

рейтинговых баллов) не менее:

по дисциплине, завершающейся экзаменом - 30 рейтинговых баллов;

по дисциплине, завершающейся зачетом - 40 рейтинговых баллов.

Студенты, не набравшие минимальных рейтинговых баллов по учебной дисциплине проходят процедуру добора баллов.

Максимальная рейтинговая оценка текущей успеваемости студента за семестр по результатам текущей работы и текущего контроля знаний (без учета премиальных баллов) составляет: 70 рейтинговых баллов для дисциплин, заканчивающихся экзаменом; 80 рейтинговых баллов для дисциплин, заканчивающихся зачетом.

Ответ студента может быть максимально оценен:

на экзамене в 30 рейтинговых баллов;

на зачете в 20 рейтинговых баллов.

Студент, по желанию, может сдать экзамен или зачет в формате «автомат», если его рейтинг за семестр, с учетом премиальных баллов, составил не менее:

если по результатам изучения дисциплины сдается экзамен

- 60 рейтинговых баллов с выставлением оценки «удовлетворительно»;
- 70 рейтинговых баллов с выставлением оценки «хорошо»;
- 90 рейтинговых баллов с выставлением оценки «отлично»;

если по результатам изучения дисциплины сдается зачет:

- 60 рейтинговых баллов с выставлением оценки «зачтено»

Рейтинговая оценка по дисциплине и соответствующая аттестационная оценка по шкале «зачтено», «удовлетворительно», «хорошо», «отлично» при использовании формата «автомат», проставляется экзаменатором в зачетную книжку и зачетно-экзаменационную ведомость только в день проведения экзамена или зачета согласно расписанию группы, в которой обучается студент.

Для приведения рейтинговой оценки к аттестационной (пятибалльный формат) используется следующая шкала:

Аттестационная оценка по дисциплине	Рейтинг студента по дисциплине		
	(включая премиальные баллы)		
«отлично»	90- 100 баллов		
«хорошо»	70 - 89 баллов		
«удовлетворительно»	60 - 69 баллов		
«неудовлетворительно»	менее 60 баллов		
«зачтено»	от 60 баллов и выше		
«не зачтено»	менее 60 баллов		

Рубежный рейтинг по дисциплине у студента на экзамене или дифференцированном зачете менее чем в 20 рейтинговых баллов считается неудовлетворительным (независимо от рейтинга студента в семестре). В этом случае в зачетно-экзаменационную ведомость в графе «Аттестационная оценка» проставляется «неудовлетворительно».

Рубежный рейтинг по дисциплине у студента на зачете менее чем в 10 рейтинговых баллов считается неудовлетворительным (независимо от рейтинга студента в семестре). В этом случае в зачетно-экзаменационную ведомость в графе «Аттестационная оценка» проставляется «не зачтено».

Преподавателю предоставляется право начислять студентам премиальные баллы за активность (участие в научных конференциях, конкурсах, олимпиадах, активная работа на аудиторных занятиях, публикации статей, работа со школьниками, выполнение заданий повышенной сложности, изготовление наглядных пособий и т.д.) в количестве, не превышающем 20 рейтинговых баллов за семестр. Премиальные баллы не входят в сумму рейтинга текущей успеваемости студента, а прибавляются к ним.

11.1. Оценочные средства для входного контроля – вопросы для собеседования.

- 1. Поясните суть понятия информации.
- 2. Дайте определение информационной технологии и поясните ее содержание.

- 3. Перечислите основные уровни информационных технологий.
- 4. Дайте определение итологии.
- 5. Что является предметом изучения итологии?
- 6. Перечислите этапы развития ИТ.
- 7. Опишите домеханический этап.
- 8. Опишите механический этап.
- 9. Опишите электро-механический этап.
- 10. Опишите электронный этап развития ИТ.
- 11. Дайте определение современных ИТ.
- 12. Раскройте ее содержание.
- 13. Перечислите основные уровни информационных технологий.
- 14. Поясните суть понятия новой информационной технологии.
- 15. Перечислите принципы новой информационной технологии.
- 16. Какие классы ИТ вы знаете?
- 17. По каким классифицированным признакам разделяют ИТ.
- 18. Какие средства включает в себя инструментальная база ИТ?
- 19. Перечислите основные базовые ИТ.
- 20. Перечислите современные прикладные ИТ.
- 21. Выделите основные поколения эволюции информационных технологий.
- 22. Перечислите формы исследования данных.
- 23. Что такое инкапсуляции, полиморфизм и наследование?
- 24. Поясните содержание числовой и нечисловой обработки информации.
- 25. Какие существуют архитектуры ЭВМ с точки зрения обработки информации?
- 26. Укажите отличия базы данных, хранилища данных, витрины данных, репозитория.
- 27. Какие модели используются на концептуальном уровне?
- 28. Дайте краткую характеристику основных типов баз данных.

11.2. Оценочные средства текущего контроля — собеседование по вопросам к лекциям и лабораторным работам.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

No	Вид контроля	Контролируемые темы (разделы)	Компетен
п\			ции,
П			компонен
			ТЫ
			которых
			контроли
			руются
1.	Собеседование (опрос по	Раздел 1 Введение в теорию компьютерного	ОПК-1
	контрольным вопросам к	моделирования	
	лабораторным работам и	Раздел 2 Искусственный интеллект	
	лекциям) - фронтальная	Раздел 3 Основы статистического	
	форма контроля,	моделирования	
	представляющая собой	Раздел 4 Описание поведения системы	
	ответы на вопросы	Раздел 5 Планирование модельных	
	преподавателя в устной	экспериментов	
	форме	Раздел 6 Обработка и анализ результатов	
		моделирования	
		Подготовить устные ответы на вопросы к	
		лабораторным работам.	
		См. контрольные вопросы к лабораторным	

		работам в приложении к рабочей программе	
		раоотам в приложении к раоочеи программе (ОС)	
		Подготовить устные ответы по вопросам	
		к лекциям.	
		См. контрольные вопросы к лекциям в	
		приложении к рабочей программе (ОС)	
2.	Отчет по лабораторным	Раздел 1 Введение в теорию компьютерного	ОПК-1
	работам - форма контроля,	моделирования	
	предусматривающая	Раздел 2 Искусственный интеллект	
	изложение и анализ	Раздел 3 Основы статистического	
	знаниевых компонентов,	моделирования	
	методик исследования,	Раздел 4 Описание поведения системы	
	этапов и результатов	Раздел 5 Планирование модельных	
	осуществления действий и		
	операций по теме работе,	Раздел 6 Обработка и анализ результатов	
	представление и	моделирования	
	обоснование выводов по	Omvem.doc);	
	работе, факторный анализ	(лабораторные работы размещены в	
	результатов,	облачных технологиях Googledisk)	
	формулирование	oosia maa maanostata oo greatsio)	
	предложений, ответы на	Типовая структура лабораторной работы	
	вопросы преподавателя по		
	теме работы. Отчет по		
	лабораторной работе		
		4. Отчет проведенной работы в виде	
	осуществляется ведущему	_	
	преподавателю,	скриншотов	
	предоставляется		
	оформленная по		
	установленному плану		
	работы и представляет собой		
	наглядную демонстрацию		
	умений и владений знаниями		
	на компьютере,		
	направленный на проверку		
	уровня практических знаний,		
	их соответствия нормам и		
	стандартам.		
3.	Вопросы к экзамену -	Раздел 1 Введение в теорию компьютерного	ОПК-1,
	вопросы для подготовки к	моделирования	
	промежуточной аттестации в	Раздел 2 Искусственный интеллект	
	виде устного ответа на	Раздел 3 Основы статистического	
	вопрос	моделирования	
		Раздел 4 Описание поведения системы	
		Раздел 5 Планирование модельных	
		экспериментов	
		Раздел 6 Обработка и анализ результатов	
		моделирования	
		См. вопросы к экзамену (представлены в	
		приложении к рабочей программе ОС)	
		<u> </u>	I .

Тема 1. Введение в теорию компьютерного моделирования

- 8. Математическая модель технологического процесса. Методы получения математических моделей технологических процессов.
- 9. Моделирование технологических процессов на ЭВМ.
- 10. Перспективы применения методов оптимизации и моделирования в проектировании технологических процессов пищевой промышленности.
- 11. Приемы моделирования процессов и объектов: материальное (физическое и аналоговое), идеальное (интуитивное, знаковое).
- 12. Модель, объект, адекватность, простота. Входные, выходные, внутренние переменные. Иерархия данных.
- 13. Виды: моделей эмпирические регрессионные, полуэмпирические, теоретические. Контроль правдоподобия модели.
- 14. Принципы моделирования. Необходимость системного исследования и совершенствования способов моделирования.

Тема 2. Искусственный интеллект

- 9. Какие информационные системы получили название «Искусственные нейронные сети»?
- 10. В чем отличие модели знаний, представленных в виде онтологии?
- 11. Для решения каких задач используют модели поиска.
- 12. Что такое генетический алгоритм?
- 13. В чем заключается задача распознавания образов и как она может решаться при помощи интеллектуальных информационных систем?
- 14. Что такое нечеткое множество?
- 15. Что такое нечеткая переменная?
- 16. Что такое лингвистическая переменная.

Тема 3. Основы статистического моделирования

- 7. Способы задания исходной информации для моделирования технологических процессов. Функция, оператор, характеристики, структурная схема технологического процесса пищевого производства.
- 8. Ориентированный граф. Последовательность построения графа. Декомпозиция системы.
- 9. Математическая модель графа технологического процесса пищевого производства. Построение обобщенного графа.
- 10. Постановка оптимизационной задачи систем массового обслуживания.

Тема 4. Описание поведения системы

- 6. Основные понятия теории систем массового обслуживания. Пуассоновский поток.
- 7. Моделирование систем массового обслуживания на ЭВМ. Имитационные модели.
- 8. Метод Монте-Карло. Датчики случайных чисел.
- 9. Математическая постановка задачи моделирования внешней структуры процесса изготовления изделий пищевой промышленности.
- 10. Конструктивный граф. Кодирование этапов обработки.

Тема 5. Планирование модельных экспериментов

- 5. Математическая постановка задачи моделирования внешней структуры процесса изготовления изделий пищевой промышленности.
- 6. Конструктивный граф. Кодирование этапов обработки.
- 7. Блоки информационного обеспечения. Моделирование процесса формирования элементов внешней среды.
- 8. Моделирование конструктивных и технологических решений и технологических операций

Тема 6. Обработка и анализ результатов моделирования

- 3. Структурно-функциональная модель технологической операции.
- 4. Критерии оптимизации и их выбор при решении различных задач моделирования

технологических процессов.

- 11. Математическая постановка задачи проектирования технологических процессов кондитерского производства. Область допустимых технологических решений. Определение области предварительных решений, отвечающих заданным требованиям.
- 12. Общая схема определения оптимальных процессов изготовления пищевой продукции.

Примерны задания для текущего контроля

Задача 1. Создание и обучение персептрона для распознавания цветков ириса

Для решения задачи использовать пакет STATISTICA Neural Networks.

- 6. Разбить заданную выборку на обучающее и контрольное множества, указать выходную переменную, перемешать наблюдения.
- 7. Создать персептрон, соответствующий структуре выборки (с выходной номинальной переменной типа «*Один-из-N*»).
- 8. Обучить персептрон.
- 9. Указать параметры классификации.
- 10. Оценить качество обучения.

<u>Задача 2</u>. Создание обучаемых структур для диагностики разновидностей аппендицита

Для решения задачи использовать пакет STATISTICA Neural Networks.

- F. Разбить заданную выборку на <u>обучающее и контрольное множества</u>. Создать персептрон, соответствующий структуре выборки, и обучить его. <u>Дополнительное задание</u>: провести отбор входных переменных с помощью генетического алгоритма (*Train/Auxiliary/Feature Selection/Genetic Algorithm*).
- G. Разбить заданную выборку на <u>обучающее, контрольное и тестовое множества</u>. Решить задачу распознавания, подобрав и обучив с помощью *Автоматического конструктора сетей* (*Intelligent Problem Solver*) следующие сети с оптимальной топологией:
 - а) персептрон,
 - b) сеть на радиальных базисных функциях и
 - с) линейную сеть.
- Н. Провести дискриминантный анализ.
- I. Сопоставить эффективность пяти указанных выше способов распознавания, а именно: оптимального и неоптимального персептрона, сети на радиальных базисных функциях, линейной сети и дискриминантного анализа, представив результаты в виде сводной таблицы.
- J. Получить статистические оценки качества распознавания для нейронной сети, наиболее эффективной при решении данной задачи.

Отчет должен содержать:

- 4) сводную таблицу с результатами применения пяти указанных способов распознавания, содержащую
 - а) процентные показатели корректного распознавания на контрольном (тестовом) множестве,
 - b) характеристики обучающего, контрольного и тестового множеств,
 - с) характеристики и графические изображения использованных нейронных сетей.
- 5) статистические оценки качества распознавания для наиболее эффективной нейронной сети, а именно:
 - а) оценку степени согласованности прогноза и наблюдений на контрольном множестве⁵,

-

⁵ Использовать электронную таблицу *Excel*.

- b) проверку гипотезы об отсутствии статистически значимых различий между результатами классификации на обучающем и контрольном множествах 6 ,
- с) проверку гипотезы об эквивалентности распределений различных типов входных данных в обучающем и контрольном множествах⁷.
- 6) комментарии и выводы.

<u>Задача 3</u>. Создание и обучение сети Кохонена для распознавания цветков ириса Для решения задачи используется пакет *STATISTICA Neural Networks*.

- 2. Разбить заданную выборку на обучающее и контрольное множества, указать выходную переменную, перемешать наблюдения.
- 3. Создать сеть Кохонена, соответствующую структуре выборки.
- 7. Обучить персептрон.
- 8. Выставить пороги принятия и отвержения.
- 9. Разметить топологическую карту.
- 10. Оценить качество обучения.
- 8. Используя диалоговое окно *Частоты выигрышей/Win Frequencies*, оценить и сравнить места расположения центров кластеров для различных классов в обучающем и контрольном множествах.

<u>Задача 4</u>. Создание сети Кохонена для диагностики неисправностей конструкции и разновидностей аппендицита

Для решения задачи использовать пакет STATISTICA Neural Networks.

- F. Разбить заданную выборку, представляющую наблюдения за неисправностями конструкции, на обучающее и контрольное множества. Создать сеть Кохонена, соответствующую структуре выборки, а также сеть, имеющую в четыре раза большее число элементов, и обучить их.
- G. Сопоставить эффективность созданных сетей Кохонена, представив результаты в виде сводной таблицы.
- Н. Используя заданную выборку, представляющую медицинские наблюдения, попытаться создать и обучить сеть Кохонена для диагностики разновидностей аппендицита.
- I. Факторизовать данные и повторить попытку.
- J. Представить результаты выполнения пунктов С и D в виде сводной таблицы.

Отчет должен содержать:

- 2) сводную таблицу с результатами применения сетей Кохонена, содержащую
 - а) процентные показатели корректного распознавания на контрольном множестве,
 - b) характеристики обучающего и контрольного множеств,
 - с) характеристики и использованных нейронных сетей графические изображения и графические изображения их топологических карт.
- 3) комментарии и выводы.

Задача 5. Прогнозирование временного ряда

Для решения задачи использовать пакет STATISTICA Neural Networks.

D. Прогнозирование месячных объемов авиаперевозок проводить с помощью 3-слойного персептрона. Анализируемой переменной приписать тип Input/Output. Учитывая наличие сезонной составляющей, параметр Временное окно (Steps) задать равным 12, а параметр Горизонт (Lookahead) – равным 1 (окно Create Network). Объемы обучающего и контрольного множеств сделать равными половине объема имеющейся выборки наблюдений. Перемешать наблюдения, не нарушая порядка их следования во времени

⁶ Использовать пакет STATISTICA.

⁷ Использовать пакеты STATISTICA Neural Networks (для классификации с помощью сетей Кохонена) и пакет STATISTICA (для проверки гипотезы об эквивалентности распределений).

- (*Shuffle*). Для обучения сети использовать *метод сопряженных градиентов*. Сравнить результаты прогноза и наблюдения (команда *Run/Time Series...*). Для оценки качества прогноза вывести статистики регрессии (команда *Statistics/Regression...*).
- Е. Решить ту же самую задачу, подобрав и обучив с помощью *Автоматического* конструктора сетей (Intelligent Problem Solver) персептрон с оптимальной топологией.
- F. Сравнить характеристики сетей, созданных при выполнении заданий A и B, включая полученные качества прогнозов.

Отчет должен содержать:

- 5) графики наблюдаемых и прогнозируемых значений временного ряда;
- 6) таблицу статистик регрессии;
- 7) характеристики и графическое изображение использованной нейронной сети;
- 8) комментарии и выводы.

11.3. Оценочные средства для промежуточной аттестации

Код компетенции	Содержание компетенции (части компетенции)	Результаты обучения	Уровни формирования компетенций в процессе освоения образовательной программы
ОПК-1	Способен применять естественнонаучны е и общеинженерные знания, методы математического анализа и	Компетенции не сформированы. Знания современных информационных технологий и методов их использования при решении задач профессиональной деятельности не сформированы. Компетенции сформированы.	Недостаточный уровень Пороговый
	моделирования, теоретического и экспериментальног о исследования в профессиональной деятельности	Сформированы базовые знания современных информационных технологий и методов их использования при решении задач профессиональной деятельности. Демонстрируется низкий уровень сформированных навыков решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования.	уровень
		Компетенции сформированы. Имеются знания современных информационных технологий и методов их использования при решении задач профессиональной деятельности. Демонстрируется высокий уровень сформированных навыков решать стандартные профессиональные задачи с применением естественнонаучных и	Продвинутый уровень

общеинженерных знаний, методов математического анализа и моделирования.	
Компетенции сформированы. Базовые знания современных информационных технологий и методов их использования при решении задач профессиональной деятельности твердые аргументированные, всесторонние. Демонстрируется высокий уровень сформированных навыков решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа. Владеет методами теоретического и экспериментального исследования объектов профессиональной деятельности	Высокий уровень

Примерный перечень вопросов к зачету

- 1. Понятие объекта и его модели.
- 2. Моделирование. Основные этапы построения модели.
- 3. Понятие ЦЕЛИ моделирования.
- 4. Почему одному и тому же объекту может быть сопоставлены разные модели?
- 5. Почему одной и той же модели могут быть сопоставлены разные объекты?
- 6. Что такое классификация моделей. На какие классы они делятся?
- 7. Роль и значение моделирования. В каких областях знаний оно применяется.
- 8. Математическое моделирование.
- 9. Формы представления математических моделей (ММ).
- 10. Методы определения ММ.
- 11. Критерии оценки ММ. Определение функции эффективности ММ.
- 12. Оценка экономичности ММ.
- 13. Оценка адекватности ММ.
- 14. Корректность, непротиворечивость ММ.
- 15. Методы прогнозирования, применяемые в геодезии для анализа функций координат и времени.
- 16. Обобщенная схема основных этапов математического моделирования
- 17. Идеализация ММ.
- 18. Дискретизация ММ.
- 19. Линеаризация ММ.
- 20. Методы реализации ММ.
- 21. Понятие имитационной модели.
- 22. Основные этапы имитационного моделирования на компьютере.
- 23. Требования, предъявляемые к имитационным моделям.
- 24. Понятие формализации.
- 25. Концептуальная модель.
- 26. Блочная модель. Переход от описания к блочной модели.

- 27. Моделирование изменения состояний объектов в фазовом пространстве.
- 28. Моделирование изменения состояний объектов в Гильбертовом пространстве.
- 29. Построение и анализ функции отклика.
- 30. Оценка правильности ММ.
- 31. Качественные критерии оценки ММ.
- 32. Количественные критерии оценки ММ.
- 33. Понятие планирования эксперимента.
- 34. Методы теории планирования эксперимента. Стратегическое и тактическое планирование экспериментов.
- 35. Применение современных информационных технологий при планировании.
- 36. Понятие системы, системности. Признаки существования системы.
- 37. Структурная схема системы
- 38. Модель «Белого (прозрачного) ящика».
- 39. Модель «Черного ящика».
- 40. Математические схемы моделирования систем.
- 41. Непрерывно-детерминированные модели.
- 42. Дискретно-детерминированные модели.
- 43. Дискретно-стохастические модели.
- 44. Непрерывно-стохастические модели.
- 45. Сетевые модели.
- 46. Комбинированные модели.
- 47. Понятие системного анализа. Задачи, решаемые методами системного анализа.
- 48. Методы системного анализа.
- 49. ММ случайных событий.
- 50. ММ случайных процессов.
- 51. Функции распределения.
- 52. Псевдослучайные последовательности и методы их генерирования.
- 53. Математическое моделирование случайных воздействий на системы.
- 54. Методы прогнозирования физических процессов.
- 55. Методы экстраполяции.
- 56. Параметрические методы. Экспертные методы.
- 57. Задачи выбора и принятия решений.
- 58. Принципы и классификация методов прогнозирования.
- 59. Сущность нормативного, экспериментального и индексного методов прогнозирования.
- 60. Многообразие задач выбора. Многокритериальные задачи принятия решений.

Примерный перечень вопросов к экзамену

- 1. Сущность математического моделирования. Прямые и обратные задачи. Этапы построения модели. Этапы моделирования. Лабораторный и вычислительный эксперимент: аналогии.
- 2. Метод главных компонентов: основные уравнения.
- 3. Метод главных компонентов: критерии для выбора оптимального числа главных компонентов.
- 4. Исходные предположения факторного анализа. Основная модель факторного анализа и ее ограничения. Общности и специфичности.
- 5. Факторный анализ: неоднозначность решения, вращение факторов.
- 6. Факторный анализ: оценка факторных нагрузок методом максимального правдоподобия.
- 7. Факторный анализ: проверка статистических гипотез, определение оптимального числа факторов.
- 8. Конфирматорный факторный анализ: история метода, отличия от традиционного

- факторного анализа.
- 9. Основная модель конфирматорного факторного анализа. Идентификация параметров модели.
- 10. Конфирматорный факторный анализ: критерии качества соответствия.
- 11. Конфирматорный факторный анализ: метод максимального правдоподобия.
- 12. Информационный критерий Акайке.
- 13. Путевые диаграммы и структурные уравнения: построение диаграмм, оценка прогнозируемых дисперсий и ковариаций по путевым диаграммам, алгебра ковариаций.
- 14. Подсчет прогнозируемых дисперсий и ковариаций при наличии обратных связей.
- 15. Построение прогнозируемых ковариационных матриц методом RAM (Reticular Action Model).
- 16. Исследование лонгитюдных данных. Симплекс-модели: основные уравнения и диаграммы.
- 17. Фенотипическая и генетическая симплекс-модели.
- 18. Выбор наиболее адекватной модели: полная модель, упрощенные модели, иерархия моделей, технология подбора составляющих модели с использованием статистических критериев.
- 19. Численные методы, используемые для идентификации моделей.
- 20. Оценка мощности теста.
- 21. Задача распознавания классов (дискриминации). Разновидности дискриминантного анализа. Обычные априорные предположения.
- 22. Дискриминантный анализ Фишера.
- 23. Канонический дискриминантный анализ. Лямбда-статистика Уилкса.
- 24. Дискриминантный анализ: байесовский подход.
- 25. Проверка статистических гипотез относительно корреляций, дисперсий и ковариационных матриц.
- 26. Дифференциальные модели: модели конфликтных ситуаций, принципы построения моделей.
- 27. «Жесткие» и «мягкие» модели. Структурная устойчивость модели.
- 28. Модели эволюции. Модель Мальтуса. Переход к мягкой модели.
- 29. Модель Лотка-Вольтерра.
- 30. Косвенное свидетельство о возможности применения теории Мальтуса.
- 31. Модели многоступенчатого управления.
- 32. Элементы качественной теории динамических систем: особые точки и их виды.
- 33. Элементы качественной теории динамических систем: предельные циклы автоколебания.
- 34. Бифуркации особых точек. Бифуркация Андронова-Хопфа.
- 35. Примеры динамических систем.
- 36. Понятие о самоорганизации и хаотическом поведении динамических систем. Понятие о синергетике.
- 37. Странные аттракторы. Система Лоренца. Фракталы и их размерность.
- 38. Численное интегрирование обыкновенных дифференциальных уравнений.

12. Организация образовательного процесса для лиц с ограниченными возможностями.

Организация образовательного процесса для лиц с ограниченными возможностями осуществляется в соответствии с «Методическими рекомендациями по организации образовательного процесса для инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса» Министерства образования и науки РФ от 08.04.2014г. № АК-

44/05BH.

В образовательном процессе используются социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Подбор и разработка учебных материалов производится с учетом индивидуальных особенностей.

Предусмотрена возможность обучения по индивидуальному графику, при составлении которого возможны различные варианты проведения занятий: в академической группе и индивидуально, на дому с использованием дистанционных образовательных технологий.

13. Лист регистрации изменений

№ п/п	Содержание изменения	Реквизиты документа об утверждении изменения	Дата введения изменения
1.			
2.			
3.			
4.			
5.			